0=-2n^2+40n-192

Simple and best practice solution for 0=-2n^2+40n-192 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-2n^2+40n-192 equation:



0=-2n^2+40n-192
We move all terms to the left:
0-(-2n^2+40n-192)=0
We add all the numbers together, and all the variables
-(-2n^2+40n-192)=0
We get rid of parentheses
2n^2-40n+192=0
a = 2; b = -40; c = +192;
Δ = b2-4ac
Δ = -402-4·2·192
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8}{2*2}=\frac{32}{4} =8 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8}{2*2}=\frac{48}{4} =12 $

See similar equations:

| -3(2x+6)=-37 | | 4(6x-16)=24 | | x+0.1=2x | | 22x+52=180 | | (14x-2)=14 | | 11(2x+5)=143 | | -22.4=-3.2+(w/6) | | 5x+1=8x+20-4x | | 7x/5=49/35 | | 3x+x+15=59 | | 5x+35=25+7x | | (5-x)/3-(5-2x)/2=1/2 | | (5-x)/3-(5-2x)/2=1/ | | 7-x+8x/3=17/6+5x/2 | | 6(1-3x)+3(4x+2)+2(X+4)=0 | | 14x-x+x=14 | | -19=+7n-7 | | 6x+10+110= | | 22.1x+5.1x=0 | | X/2+5/9=2x/3 | | 1.414x=1-x | | 25-7=28-4a | | 2-x=14x | | 4(x+4)=31 | | (m-4)/4=(m-5)/50/1 | | 7-x+8x/3=17/6+5x/20/125 | | 99-99x=99 | | 2^x=1073741824‬ | | 2^x=1,073,741,824‬ | | 5m+9=m+11 | | (X+1)^2+(x-3)^2=15 | | 6*(42-y)+6y=252 |

Equations solver categories